Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerated exploration of multi-principal element alloys with solid solution phases

Recent multi-principal element, high entropy alloy (HEA) development strategies vastly expand the number of candidate alloy systems, but also pose a new challenge--how to rapidly screen thousands of candidate alloy systems for targeted properties. Here we develop a new approach to rapidly assess structural metals by combining calculated phase diagrams with simple rules based on the phases prese...

متن کامل

Atomic Structure Modeling of Multi-Principal-Element Alloys by the Principle of Maximum Entropy

Atomic structure models of multi-principal-element alloys (or high-entropy alloys) composed of four to eight componential elements in both BCC and FCC lattice structures are built according to the principle of maximum entropy. With the concept of entropic force, the maximum-entropy configurations of these phases are generated through the use of Monte Carlo computer simulation. The efficiency of...

متن کامل

Strengthening Mechanisms in the Aged 2024 and 7075 Aluminium Alloys

Aluminum 2024 and 7075 alloys which are widely used in aerospace and marine applications were chosen to investigate their strengthening mechanisms. Using differential thermal analysis (DIA), metallography and tension tests, the best solutionizing conditions were determined to be 500±5°C and 2 hours for 2024 and 480?±5°C and 1 hour for 7075 alloy. Aging was performed in the range of 100 to 200°C...

متن کامل

Comparison of Local and Non-Local Methods in Covariance Matrix Estimation by Using Multi-baseline SAR Interferometry and Height Extraction for Principal Components with Maximum Likelihood Approach

By today, the technology of synthetic aperture radar (SAR) interferometry (InSAR) has been largely exploited in digital elevation model (DEM) generation and deformation mapping. Conventional InSAR technique exploits two SAR images acquired from slightly different angles, in which the information of elevation and deformation can be captured through processing of the phase difference of the image...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Communications

سال: 2019

ISSN: 2041-1723

DOI: 10.1038/s41467-019-11464-7